A sensitivity analysis algorithm for hierarchical decision models

نویسندگان

  • Hongyi Chen
  • Dundar F. Kocaoglu
چکیده

In this paper, a comprehensive algorithm is developed to analyze the sensitivity of hierarchical decision models (HDM), including the analytic hierarchy process and its variants, to single and multiple changes in the local contribution matrices at any level of the decision hierarchy. The algorithm is applicable to all HDM that use an additive function to derive the overall contribution vector. It is independent of pairwise comparison scales, judgment quantification techniques and group opinion combining methods. The allowable range/region of perturbations, contribution tolerance, operating point sensitivity coefficient, total sensitivity coefficient and the most critical decision element at a certain level are identified in the HDM SA algorithm. An example is given to demonstrate the application of the algorithm and show that HDM SA can reveal information more significant and useful than simply knowing the rank order of the decision alternatives. 2007 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-Criteria Risk-Benefit Analysis of Health Care Management

Abstract Purpose of this paper: The objectives of this paper are two folds: (1) utilizing hierarchical fuzzy technique for order preference by similarity to ideal solution (TOPSIS) approach to evaluate the most suitable RFID-based systems decision, and (2) to highlight key risks and benefits of radio frequency identification technology in healthcare industry. Design/methodology/approach: R...

متن کامل

Applying Two Computational Classification Methods to Predict the Risk of Breast Cancer: A Comparative Study

Introduction: Lack of a proper method for early detection and diagnostic errors in medicine are some fundamental problems in treating cancer. Data analysis techniques may significantly help early diagnosis. The current study aimed at applying and evaluating neural networks and decision tree algorithm on breast cancer patients’ data for early cancer prediction. Methods: In the current stu...

متن کامل

Applying Two Computational Classification Methods to Predict the Risk of Breast Cancer: A Comparative Study

Introduction: Lack of a proper method for early detection and diagnostic errors in medicine are some fundamental problems in treating cancer. Data analysis techniques may significantly help early diagnosis. The current study aimed at applying and evaluating neural networks and decision tree algorithm on breast cancer patients’ data for early cancer prediction. Methods: In the current stu...

متن کامل

Early Prediction of Gestational Diabetes Using ‎Decision Tree and Artificial Neural Network Algorithms

Introduction: Gestational diabetes is associated with many short-term and long-term complications in mothers and newborns; hence, the detection of its risk factors can contribute to the timely diagnosis and prevention of relevant complications. The present study aimed to design and compare Gestational diabetes mellitus (GDM) prediction models using artificial intelligence algorithms. Materials ...

متن کامل

ارائه مدلی جهت پیش بینی بیماری دیابت با استفاده از شبکه عصبی

Introduction: Meta-heuristic and combined algorithms have a great capability in modelling medical decision making. This study used neural networks in order to predict Type 2 Diabetes (T2D) among high risk individuals. Methods: This study was   an applied research. Data from 545 individuals (diabetic and non-diabetic), in Diabetes Clinic of Hamedan University of Medical Sciences, we...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • European Journal of Operational Research

دوره 185  شماره 

صفحات  -

تاریخ انتشار 2008